
Basic Statistics 
 

• Descriptive statistics  
o "True" Mean and Confidence Interval  
o Shape of the Distribution, Normality  

• Correlations  
o Purpose (What is Correlation?)  
o Simple Linear Correlation (Pearson r)  
o How to Interpret the Values of Correlations  
o Significance of Correlations  
o Outliers  
o Quantitative Approach to Outliers  
o Correlations in Non-homogeneous Groups  
o Nonlinear Relations between Variables  
o Measuring Nonlinear Relations  
o Exploratory Examination of Correlation Matrices  
o Casewise vs. Pairwise Deletion of Missing Data  
o How to Identify Biases Caused by the Bias due to Pairwise Deletion of Missing 

Data  
o Pairwise Deletion of Missing Data vs. Mean Substitution  
o Spurious Correlations  
o Are correlation coefficients "additive?"  
o How to Determine Whether Two Correlation Coefficients are Significant  

• t-test for independent samples  
o Purpose, Assumptions  
o Arrangement of Data  
o t-test graphs  
o More Complex Group Comparisons  

• t-test for dependent samples  
o Within-group Variation  
o Purpose  
o Assumptions  
o Arrangement of Data  
o Matrices of t-tests  
o More Complex Group Comparisons  

• Breakdown: Descriptive statistics by groups  
o Purpose  
o Arrangement of Data  
o Statistical Tests in Breakdowns  
o Other Related Data Analysis Techniques  
o Post-Hoc Comparisons of Means  
o Breakdowns vs. Discriminant Function Analysis  
o Breakdowns vs. Frequency Tables  
o Graphical breakdowns  

• Frequency tables  
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o Purpose  
o Applications  

• Crosstabulation and stub-and-banner tables  
o Purpose and Arrangement of Table  
o 2x2 Table  
o Marginal Frequencies  
o Column, Row, and Total Percentages  
o Graphical Representations of Crosstabulations  
o Stub-and-Banner Tables  
o Interpreting the Banner Table  
o Multi-way Tables with Control Variables  
o Graphical Representations of Multi-way Tables  
o Statistics in crosstabulation tables  
o Multiple responses/dichotomies  

 
Descriptive Statistics  

"True" Mean and Confidence Interval. Probably the most often used descriptive statistic is 
the mean. The mean is a particularly informative measure of the "central tendency" of the 
variable if it is reported along with its confidence intervals. As mentioned earlier, usually we are 
interested in statistics (such as the mean) from our sample only to the extent to which they can 
infer information about the population. The confidence intervals for the mean give us a range of 
values around the mean where we expect the "true" (population) mean is located (with a given 
level of certainty, see also Elementary Concepts). For example, if the mean in your sample is 23, 
and the lower and upper limits of the p=.05 confidence interval are 19 and 27 respectively, then 
you can conclude that there is a 95% probability that the population mean is greater than 19 and 
lower than 27. If you set the p-level to a smaller value, then the interval would become wider 
thereby increasing the "certainty" of the estimate, and vice versa; as we all know from the 
weather forecast, the more "vague" the prediction (i.e., wider the confidence interval), the more 
likely it will materialize. Note that the width of the confidence interval depends on the sample 
size and on the variation of data values. The larger the sample size, the more reliable its mean. 
The larger the variation, the less reliable the mean (see also Elementary Concepts). The 
calculation of confidence intervals is based on the assumption that the variable is normally 
distributed in the population. The estimate may not be valid if this assumption is not met, unless 
the sample size is large, say n=100 or more.  

Shape of the Distribution, Normality. An important aspect of the "description" of a variable 
is the shape of its distribution, which tells you the frequency of values from different ranges of 
the variable. Typically, a researcher is interested in how well the distribution can be 
approximated by the normal distribution (see the animation below for an example of this 
distribution) (see also Elementary Concepts). Simple descriptive statistics can provide some 
information relevant to this issue. For example, if the skewness (which measures the deviation of 
the distribution from symmetry) is clearly different from 0, then that distribution is 
asymmetrical, while normal distributions are perfectly symmetrical. If the kurtosis (which 
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measures "peakedness" of the distribution) is clearly different from 0, then the distribution is 
either flatter or more peaked than normal; the kurtosis of the normal distribution is 0.  

 

More precise information can be obtained by performing one of the tests of normality to 
determine the probability that the sample came from a normally distributed population of 
observations (e.g., the so-called Kolmogorov-Smirnov test, or the Shapiro-Wilks' W test. 
However, none of these tests can entirely substitute for a visual examination of the data using a 
histogram (i.e., a graph that shows the frequency distribution of a variable).  

 

The graph allows you to evaluate the normality of the empirical distribution because it also 
shows the normal curve superimposed over the histogram. It also allows you to examine various 
aspects of the distribution qualitatively. For example, the distribution could be bimodal (have 2 
peaks). This might suggest that the sample is not homogeneous but possibly its elements came 
from two different populations, each more or less normally distributed. In such cases, in order to 
understand the nature of the variable in question, you should look for a way to quantitatively 
identify the two sub-samples. 

 
 
 

To index

 
Correlations  
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Purpose (What is Correlation?) Correlation is a measure of the relation between two or more 
variables. The measurement scales used should be at least interval scales, but other correlation 
coefficients are available to handle other types of data. Correlation coefficients can range from -
1.00 to +1.00. The value of -1.00 represents a perfect negative correlation while a value of +1.00 
represents a perfect positive correlation. A value of 0.00 represents a lack of correlation.  

 

The most widely-used type of correlation coefficient is Pearson r, also called linear or product- 
moment correlation.  

Simple Linear Correlation (Pearson r). Pearson correlation (hereafter called correlation), 
assumes that the two variables are measured on at least interval scales (see Elementary 
Concepts), and it determines the extent to which values of the two variables are "proportional" to 
each other. The value of correlation (i.e., correlation coefficient) does not depend on the specific 
measurement units used; for example, the correlation between height and weight will be identical 
regardless of whether inches and pounds, or centimeters and kilograms are used as measurement 
units. Proportional means linearly related; that is, the correlation is high if it can be 
"summarized" by a straight line (sloped upwards or downwards).  
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This line is called the regression line or least squares line, because it is determined such that the 
sum of the squared distances of all the data points from the line is the lowest possible. Note that 
the concept of squared distances will have important functional consequences on how the value 
of the correlation coefficient reacts to various specific arrangements of data (as we will later see).  

How to Interpret the Values of Correlations. As mentioned before, the correlation 
coefficient (r) represents the linear relationship between two variables. If the correlation 
coefficient is squared, then the resulting value (r2, the coefficient of determination) will represent 
the proportion of common variation in the two variables (i.e., the "strength" or "magnitude" of 
the relationship). In order to evaluate the correlation between variables, it is important to know 
this "magnitude" or "strength" as well as the significance of the correlation.  

Significance of Correlations. The significance level calculated for each correlation is a 
primary source of information about the reliability of the correlation. As explained before (see 
Elementary Concepts), the significance of a correlation coefficient of a particular magnitude will 
change depending on the size of the sample from which it was computed. The test of significance 
is based on the assumption that the distribution of the residual values (i.e., the deviations from 
the regression line) for the dependent variable y follows the normal distribution, and that the 
variability of the residual values is the same for all values of the independent variable x. 
However, Monte Carlo studies suggest that meeting those assumptions closely is not absolutely 
crucial if your sample size is not very small and when the departure from normality is not very 
large. It is impossible to formulate precise recommendations based on those Monte- Carlo 
results, but many researchers follow a rule of thumb that if your sample size is 50 or more then 
serious biases are unlikely, and if your sample size is over 100 then you should not be concerned 
at all with the normality assumptions. There are, however, much more common and serious 
threats to the validity of information that a correlation coefficient can provide; they are briefly 
discussed in the following paragraphs.  
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Outliers. Outliers are atypical (by definition), infrequent observations. Because of the way in 
which the regression line is determined (especially the fact that it is based on minimizing not the 
sum of simple distances but the sum of squares of distances of data points from the line), outliers 
have a profound influence on the slope of the regression line and consequently on the value of 
the correlation coefficient. A single outlier is capable of considerably changing the slope of the 
regression line and, consequently, the value of the correlation, as demonstrated in the following 
example. Note, that as shown on that illustration, just one outlier can be entirely responsible for a 
high value of the correlation that otherwise (without the outlier) would be close to zero. Needless 
to say, one should never base important conclusions on the value of the correlation coefficient 
alone (i.e., examining the respective scatterplot is always recommended).  

 

Note that if the sample size is relatively small, then including or excluding specific data points 
that are not as clearly "outliers" as the one shown in the previous example may have a profound 
influence on the regression line (and the correlation coefficient). This is illustrated in the 
following example where we call the points being excluded "outliers;" one may argue, however, 
that they are not outliers but rather extreme values.  
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Typically, we believe that outliers represent a random error that we would like to be able to 
control. Unfortunately, there is no widely accepted method to remove outliers automatically 
(however, see the next paragraph), thus what we are left with is to identify any outliers by 
examining a scatterplot of each important correlation. Needless to say, outliers may not only 
artificially increase the value of a correlation coefficient, but they can also decrease the value of 
a "legitimate" correlation. 

See also Confidence Ellipse.  

Quantitative Approach to Outliers. Some researchers use quantitative methods to exclude 
outliers. For example, they exclude observations that are outside the range of ±2 standard 
deviations (or even ±1.5 sd's) around the group or design cell mean. In some areas of research, 
such "cleaning" of the data is absolutely necessary. For example, in cognitive psychology 
research on reaction times, even if almost all scores in an experiment are in the range of 300-700 
milliseconds, just a few "distracted reactions" of 10-15 seconds will completely change the 
overall picture. Unfortunately, defining an outlier is subjective (as it should be), and the 
decisions concerning how to identify them must be made on an individual basis (taking into 
account specific experimental paradigms and/or "accepted practice" and general research 
experience in the respective area). It should also be noted that in some rare cases, the relative 
frequency of outliers across a number of groups or cells of a design can be subjected to analysis 
and provide interpretable results. For example, outliers could be indicative of the occurrence of a 
phenomenon that is qualitatively different than the typical pattern observed or expected in the 
sample, thus the relative frequency of outliers could provide evidence of a relative frequency of 
departure from the process or phenomenon that is typical for the majority of cases in a group. 
See also Confidence Ellipse.  

Correlations in Non-homogeneous Groups. A lack of homogeneity in the sample from 
which a correlation was calculated can be another factor that biases the value of the correlation. 
Imagine a case where a correlation coefficient is calculated from data points which came from 
two different experimental groups but this fact is ignored when the correlation is calculated. Let 
us assume that the experimental manipulation in one of the groups increased the values of both 
correlated variables and thus the data from each group form a distinctive "cloud" in the 
scatterplot (as shown in the graph below).  
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In such cases, a high correlation may result that is entirely due to the arrangement of the two 
groups, but which does not represent the "true" relation between the two variables, which may 
practically be equal to 0 (as could be seen if we looked at each group separately, see the 
following graph).  

 

If you suspect the influence of such a phenomenon on your correlations and know how to 
identify such "subsets" of data, try to run the correlations separately in each subset of 
observations. If you do not know how to identify the hypothetical subsets, try to examine the 
data with some exploratory multivariate techniques (e.g., Cluster Analysis).  

Nonlinear Relations between Variables. Another potential source of problems with the 
linear (Pearson r) correlation is the shape of the relation. As mentioned before, Pearson r 
measures a relation between two variables only to the extent to which it is linear; deviations from 
linearity will increase the total sum of squared distances from the regression line even if they 
represent a "true" and very close relationship between two variables. The possibility of such non-
linear relationships is another reason why examining scatterplots is a necessary step in evaluating 
every correlation. For example, the following graph demonstrates an extremely strong 
correlation between the two variables which is not well described by the linear function.  
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Measuring Nonlinear Relations. What do you do if a correlation is strong but clearly 
nonlinear (as concluded from examining scatterplots)? Unfortunately, there is no simple answer 
to this question, because there is no easy-to-use equivalent of Pearson r that is capable of 
handling nonlinear relations. If the curve is monotonous (continuously decreasing or increasing) 
you could try to transform one or both of the variables to remove the curvilinearity and then 
recalculate the correlation. For example, a typical transformation used in such cases is the 
logarithmic function which will "squeeze" together the values at one end of the range. Another 
option available if the relation is monotonous is to try a nonparametric correlation (e.g., 
Spearman R, see Nonparametrics and Distribution Fitting) which is sensitive only to the ordinal 
arrangement of values, thus, by definition, it ignores monotonous curvilinearity. However, 
nonparametric correlations are generally less sensitive and sometimes this method will not 
produce any gains. Unfortunately, the two most precise methods are not easy to use and require a 
good deal of "experimentation" with the data. Therefore you could:  

A. Try to identify the specific function that best describes the curve. After a function has 
been found, you can test its "goodness-of-fit" to your data.  

B. Alternatively, you could experiment with dividing one of the variables into a number of 
segments (e.g., 4 or 5) of an equal width, treat this new variable as a grouping variable 
and run an analysis of variance on the data.  

Exploratory Examination of Correlation Matrices. A common first step of many data 
analyses that involve more than a very few variables is to run a correlation matrix of all variables 
and then examine it for expected (and unexpected) significant relations. When this is done, you 
need to be aware of the general nature of statistical significance (see Elementary Concepts); 
specifically, if you run many tests (in this case, many correlations), then significant results will 
be found "surprisingly often" due to pure chance. For example, by definition, a coefficient 
significant at the .05 level will occur by chance once in every 20 coefficients. There is no 
"automatic" way to weed out the "true" correlations. Thus, you should treat all results that were 
not predicted or planned with particular caution and look for their consistency with other results; 
ultimately, though, the most conclusive (although costly) control for such a randomness factor is 
to replicate the study. This issue is general and it pertains to all analyses that involve "multiple 
comparisons and statistical significance." This problem is also briefly discussed in the context of 
post-hoc comparisons of means and the Breakdowns option.  

Casewise vs. Pairwise Deletion of Missing Data. The default way of deleting missing data 
while calculating a correlation matrix is to exclude all cases that have missing data in at least one 
of the selected variables; that is, by casewise deletion of missing data. Only this way will you get 
a "true" correlation matrix, where all correlations are obtained from the same set of observations. 
However, if missing data are randomly distributed across cases, you could easily end up with no 
"valid" cases in the data set, because each of them will have at least one missing data in some 
variable. The most common solution used in such instances is to use so-called pairwise deletion 
of missing data in correlation matrices, where a correlation between each pair of variables is 
calculated from all cases that have valid data on those two variables. In many instances there is 
nothing wrong with that method, especially when the total percentage of missing data is low, say 
10%, and they are relatively randomly distributed between cases and variables. However, it may 
sometimes lead to serious problems.  
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For example, a systematic bias may result from a "hidden" systematic distribution of missing 
data, causing different correlation coefficients in the same correlation matrix to be based on 
different subsets of subjects. In addition to the possibly biased conclusions that you could derive 
from such "pairwise calculated" correlation matrices, real problems may occur when you subject 
such matrices to another analysis (e.g., multiple regression, factor analysis, or cluster analysis) 
that expects a "true correlation matrix," with a certain level of consistency and "transitivity" 
between different coefficients. Thus, if you are using the pairwise method of deleting the missing 
data, be sure to examine the distribution of missing data across the cells of the matrix for 
possible systematic "patterns."  

How to Identify Biases Caused by the Bias due to Pairwise Deletion of Missing Data. 
If the pairwise deletion of missing data does not introduce any systematic bias to the correlation 
matrix, then all those pairwise descriptive statistics for one variable should be very similar. 
However, if they differ, then there are good reasons to suspect a bias. For example, if the mean 
(or standard deviation) of the values of variable A that were taken into account in calculating its 
correlation with variable B is much lower than the mean (or standard deviation) of those values 
of variable A that were used in calculating its correlation with variable C, then we would have 
good reason to suspect that those two correlations (A-B and A-C) are based on different subsets 
of data, and thus, that there is a bias in the correlation matrix caused by a non-random 
distribution of missing data.  

Pairwise Deletion of Missing Data vs. Mean Substitution. Another common method to 
avoid loosing data due to casewise deletion is the so-called mean substitution of missing data 
(replacing all missing data in a variable by the mean of that variable). Mean substitution offers 
some advantages and some disadvantages as compared to pairwise deletion. Its main advantage 
is that it produces "internally consistent" sets of results ("true" correlation matrices). The main 
disadvantages are:  

A. Mean substitution artificially decreases the variation of scores, and this decrease in 
individual variables is proportional to the number of missing data (i.e., the more missing 
data, the more "perfectly average scores" will be artificially added to the data set).  

B. Because it substitutes missing data with artificially created "average" data points, mean 
substitution may considerably change the values of correlations.  

Spurious Correlations. Although you cannot prove causal relations based on correlation 
coefficients (see Elementary Concepts), you can still identify so-called spurious correlations; that 
is, correlations that are due mostly to the influences of "other" variables. For example, there is a 
correlation between the total amount of losses in a fire and the number of firemen that were 
putting out the fire; however, what this correlation does not indicate is that if you call fewer 
firemen then you would lower the losses. There is a third variable (the initial size of the fire) that 
influences both the amount of losses and the number of firemen. If you "control" for this variable 
(e.g., consider only fires of a fixed size), then the correlation will either disappear or perhaps 
even change its sign. The main problem with spurious correlations is that we typically do not 
know what the "hidden" agent is. However, in cases when we know where to look, we can use 
partial correlations that control for (partial out) the influence of specified variables.  
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Are correlation coefficients "additive?" No, they are not. For example, an average of 
correlation coefficients in a number of samples does not represent an "average correlation" in all 
those samples. Because the value of the correlation coefficient is not a linear function of the 
magnitude of the relation between the variables, correlation coefficients cannot simply be 
averaged. In cases when you need to average correlations, they first have to be converted into 
additive measures. For example, before averaging, you can square them to obtain coefficients of 
determination which are additive (as explained before in this section), or convert them into so-
called Fisher z values, which are also additive.  

How to Determine Whether Two Correlation Coefficients are Significant. A test is 
available that will evaluate the significance of differences between two correlation coefficients in 
two samples. The outcome of this test depends not only on the size of the raw difference between 
the two coefficients but also on the size of the samples and on the size of the coefficients 
themselves. Consistent with the previously discussed principle, the larger the sample size, the 
smaller the effect that can be proven significant in that sample. In general, due to the fact that the 
reliability of the correlation coefficient increases with its absolute value, relatively small 
differences between large correlation coefficients can be significant. For example, a difference of 
.10 between two correlations may not be significant if the two coefficients are .15 and .25, 
although in the same sample, the same difference of .10 can be highly significant if the two 
coefficients are .80 and .90. 

 
 
 

To index

 
t-test for independent samples  

Purpose, Assumptions. The t-test is the most commonly used method to evaluate the 
differences in means between two groups. For example, the t-test can be used to test for a 
difference in test scores between a group of patients who were given a drug and a control group 
who received a placebo. Theoretically, the t-test can be used even if the sample sizes are very 
small (e.g., as small as 10; some researchers claim that even smaller n's are possible), as long as 
the variables are normally distributed within each group and the variation of scores in the two 
groups is not reliably different (see also Elementary Concepts). As mentioned before, the 
normality assumption can be evaluated by looking at the distribution of the data (via histograms) 
or by performing a normality test. The equality of variances assumption can be verified with the 
F test, or you can use the more robust Levene's test. If these conditions are not met, then you can 
evaluate the differences in means between two groups using one of the nonparametric 
alternatives to the t- test (see Nonparametrics and Distribution Fitting).  

The p-level reported with a t-test represents the probability of error involved in accepting our 
research hypothesis about the existence of a difference. Technically speaking, this is the 
probability of error associated with rejecting the hypothesis of no difference between the two 
categories of observations (corresponding to the groups) in the population when, in fact, the 
hypothesis is true. Some researchers suggest that if the difference is in the predicted direction, 
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you can consider only one half (one "tail") of the probability distribution and thus divide the 
standard p-level reported with a t-test (a "two-tailed" probability) by two. Others, however, 
suggest that you should always report the standard, two-tailed t-test probability.  

See also, Student's t Distribution.  

Arrangement of Data. In order to perform the t-test for independent samples, one independent 
(grouping) variable (e.g., Gender: male/female) and at least one dependent variable (e.g., a test 
score) are required. The means of the dependent variable will be compared between selected 
groups based on the specified values (e.g., male and female) of the independent variable. The 
following data set can be analyzed with a t-test comparing the average WCC score in males and 
females. 

  GENDER WCC 
case 1 
case 2 
case 3 
case 4 
case 5 

male 
male 
male 

female 
female 

111 
110 
109 
102 
104 

  mean WCC in males = 110 
mean WCC in females = 103 

 
 

t-test graphs. In the t-test analysis, comparisons of means and measures of variation in the two 
groups can be visualized in box and whisker plots (for an example, see the graph below).  

 

These graphs help you to quickly evaluate and "intuitively visualize" the strength of the relation 
between the grouping and the dependent variable.  

More Complex Group Comparisons. It often happens in research practice that you need to 
compare more than two groups (e.g., drug 1, drug 2, and placebo), or compare groups created by 
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more than one independent variable while controlling for the separate influence of each of them 
(e.g., Gender, type of Drug, and size of Dose). In these cases, you need to analyze the data using 
Analysis of Variance, which can be considered to be a generalization of the t-test. In fact, for two 
group comparisons, ANOVA will give results identical to a t-test (t**2 [df] = F[1,df]). 
However, when the design is more complex, ANOVA offers numerous advantages that t-tests 
cannot provide (even if you run a series of t- tests comparing various cells of the design).  

 
 
 

To index

 
t-test for dependent samples  

Within-group Variation. As explained in Elementary Concepts, the size of a relation between 
two variables, such as the one measured by a difference in means between two groups, depends 
to a large extent on the differentiation of values within the group. Depending on how 
differentiated the values are in each group, a given "raw difference" in group means will indicate 
either a stronger or weaker relationship between the independent (grouping) and dependent 
variable. For example, if the mean WCC (White Cell Count) was 102 in males and 104 in 
females, then this difference of "only" 2 points would be extremely important if all values for 
males fell within a range of 101 to 103, and all scores for females fell within a range of 103 to 
105; for example, we would be able to predict WCC pretty well based on gender. However, if the 
same difference of 2 was obtained from very differentiated scores (e.g., if their range was 0-200), 
then we would consider the difference entirely negligible. That is to say, reduction of the within-
group variation increases the sensitivity of our test.  

Purpose. The t-test for dependent samples helps us to take advantage of one specific type of 
design in which an important source of within-group variation (or so-called, error) can be easily 
identified and excluded from the analysis. Specifically, if two groups of observations (that are to 
be compared) are based on the same sample of subjects who were tested twice (e.g., before and 
after a treatment), then a considerable part of the within-group variation in both groups of scores 
can be attributed to the initial individual differences between subjects. Note that, in a sense, this 
fact is not much different than in cases when the two groups are entirely independent (see t-test 
for independent samples), where individual differences also contribute to the error variance; but 
in the case of independent samples, we cannot do anything about it because we cannot identify 
(or "subtract") the variation due to individual differences in subjects. However, if the same 
sample was tested twice, then we can easily identify (or "subtract") this variation. Specifically, 
instead of treating each group separately, and analyzing raw scores, we can look only at the 
differences between the two measures (e.g., "pre-test" and "post test") in each subject. By 
subtracting the first score from the second for each subject and then analyzing only those "pure 
(paired) differences," we will exclude the entire part of the variation in our data set that results 
from unequal base levels of individual subjects. This is precisely what is being done in the t-test 
for dependent samples, and, as compared to the t-test for independent samples, it always 
produces "better" results (i.e., it is always more sensitive).  
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Assumptions. The theoretical assumptions of the t-test for independent samples also apply to 
the dependent samples test; that is, the paired differences should be normally distributed. If these 
assumptions are clearly not met, then one of the nonparametric alternative tests should be used.  

See also, Student's t Distribution.  

Arrangement of Data. Technically, we can apply the t-test for dependent samples to any two 
variables in our data set. However, applying this test will make very little sense if the values of 
the two variables in the data set are not logically and methodologically comparable. For example, 
if you compare the average WCC in a sample of patients before and after a treatment, but using a 
different counting method or different units in the second measurement, then a highly significant 
t-test value could be obtained due to an artifact; that is, to the change of units of measurement. 
Following, is an example of a data set that can be analyzed using the t-test for dependent 
samples.  

  WCC 
before 

WCC 
after 

case 1 
case 2 
case 3 
case 4 
case 5 

... 

111.9 
109 
143 
101 
80 
... 

113 
110 
144 
102 

80.9 
... 

  average change between WCC 
"before" and "after" = 1 

 
The average difference between the two conditions is relatively small (d=1) as compared to the 
differentiation (range) of the raw scores (from 80 to 143, in the first sample). However, the t-test 
for dependent samples analysis is performed only on the paired differences , "ignoring" the raw 
scores and their potential differentiation. Thus, the size of this particular difference of 1 will be 
compared not to the differentiation of raw scores but to the differentiation of the individual 
difference scores, which is relatively small: 0.2 (from 0.9 to 1.1). Compared to that variability, 
the difference of 1 is extremely large and can yield a highly significant t value.  

Matrices of t-tests. t-tests for dependent samples can be calculated for long lists of variables, 
and reviewed in the form of matrices produced with casewise or pairwise deletion of missing 
data, much like the correlation matrices. Thus, the precautions discussed in the context of 
correlations also apply to t-test matrices; see:  

a. the issue of artifacts caused by the pairwise deletion of missing data in t-tests and  
b. the issue of "randomly" significant test values.  

More Complex Group Comparisons. If there are more than two "correlated samples" (e.g., 
before treatment, after treatment 1, and after treatment 2), then analysis of variance with 
repeated measures should be used. The repeated measures ANOVA can be considered a 
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generalization of the t-test for dependent samples and it offers various features that increase the 
overall sensitivity of the analysis. For example, it can simultaneously control not only for the 
base level of the dependent variable, but it can control for other factors and/or include in the 
design more than one interrelated dependent variable (MANOVA; for additional details refer to 
ANOVA/MANOVA).  

 
 
 

To index

 
Breakdown: Descriptive Statistics by Groups  

Purpose. The breakdowns analysis calculates descriptive statistics and correlations for 
dependent variables in each of a number of groups defined by one or more grouping 
(independent) variables.  

Arrangement of Data. In the following example data set (spreadsheet), the dependent variable 
WCC (White Cell Count) can be broken down by 2 independent variables: Gender (values: males 
and females), and Height (values: tall and short).  

  GENDER HEIGHT WCC 
case 1 
case 2 
case 3 
case 4 
case 5 

... 

male 
male 
male 

female 
female 

... 

short 
tall 
tall 
tall 

short 
... 

101 
110 
92 

112 
95 
... 

 
The resulting breakdowns might look as follows (we are assuming that Gender was specified as 
the first independent variable, and Height as the second).  

Entire sample 
Mean=100 

SD=13 
N=120 

Males 
Mean=99 
SD=13 
N=60 

Females 
Mean=101 

SD=13 
N=60 

Tall/males 
Mean=98 
SD=13 
N=30 

Short/males 
Mean=100 

SD=13 
N=30 

Tall/females 
Mean=101 

SD=13 
N=30 

Short/females
Mean=101

SD=13 
N=30
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The composition of the "intermediate" level cells of the "breakdown tree" depends on the order 
in which independent variables are arranged. For example, in the above example, you see the 
means for "all males" and "all females" but you do not see the means for "all tall subjects" and 
"all short subjects" which would have been produced had you specified independent variable 
Height as the first grouping variable rather than the second.  

Statistical Tests in Breakdowns. Breakdowns are typically used as an exploratory data 
analysis technique; the typical question that this technique can help answer is very simple: Are 
the groups created by the independent variables different regarding the dependent variable? If 
you are interested in differences concerning the means, then the appropriate test is the 
breakdowns one-way ANOVA (F test). If you are interested in variation differences, then you 
should test for homogeneity of variances.  

Other Related Data Analysis Techniques. Although for exploratory data analysis, 
breakdowns can use more than one independent variable, the statistical procedures in 
breakdowns assume the existence of a single grouping factor (even if, in fact, the breakdown 
results from a combination of a number of grouping variables). Thus, those statistics do not 
reveal or even take into account any possible interactions between grouping variables in the 
design. For example, there could be differences between the influence of one independent 
variable on the dependent variable at different levels of another independent variable (e.g., tall 
people could have lower WCC than short ones, but only if they are males; see the "tree" data 
above). You can explore such effects by examining breakdowns "visually," using different orders 
of independent variables, but the magnitude or significance of such effects cannot be estimated 
by the breakdown statistics.  

Post-Hoc Comparisons of Means. Usually, after obtaining a statistically significant F test 
from the ANOVA, one wants to know which of the means contributed to the effect (i.e., which 
groups are particularly different from each other). One could of course perform a series of simple 
t-tests to compare all possible pairs of means. However, such a procedure would capitalize on 
chance. This means that the reported probability levels would actually overestimate the statistical 
significance of mean differences. Without going into too much detail, suppose you took 20 
samples of 10 random numbers each, and computed 20 means. Then, take the group (sample) 
with the highest mean and compare it with that of the lowest mean. The t-test for independent 
samples will test whether or not those two means are significantly different from each other, 
provided they were the only two samples taken. Post-hoc comparison techniques on the other 
hand specifically take into account the fact that more than two samples were taken.  

Breakdowns vs. Discriminant Function Analysis. Breakdowns can be considered as a first 
step toward another type of analysis that explores differences between groups: Discriminant 
function analysis. Similar to breakdowns, discriminant function analysis explores the differences 
between groups created by values (group codes) of an independent (grouping) variable. 
However, unlike breakdowns, discriminant function analysis simultaneously analyzes more than 
one dependent variable and it identifies "patterns" of values of those dependent variables. 
Technically, it determines a linear combination of the dependent variables that best predicts the 
group membership. For example, discriminant function analysis can be used to analyze 
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differences between three groups of persons who have chosen different professions (e.g., 
lawyers, physicians, and engineers) in terms of various aspects of their scholastic performance in 
high school. One could claim that such analysis could "explain" the choice of a profession in 
terms of specific talents shown in high school; thus discriminant function analysis can be 
considered to be an "exploratory extension" of simple breakdowns.  

Breakdowns vs. Frequency Tables. Another related type of analysis that cannot be directly 
performed with breakdowns is comparisons of frequencies of cases (n's) between groups. 
Specifically, often the n's in individual cells are not equal because the assignment of subjects to 
those groups typically results not from an experimenter's manipulation, but from subjects' pre-
existing dispositions. If, in spite of the random selection of the entire sample, the n's are unequal, 
then it may suggest that the independent variables are related. For example, crosstabulating 
levels of independent variables Age and Education most likely would not create groups of equal 
n, because education is distributed differently in different age groups. If you are interested in 
such comparisons, you can explore specific frequencies in the breakdowns tables, trying different 
orders of independent variables. However, in order to subject such differences to statistical tests, 
you should use crosstabulations and frequency tables, Log-Linear Analysis, or Correspondence 
Analysis (for more advanced analyses on multi-way frequency tables). 

Graphical breakdowns. Graphs can often identify effects (both expected and unexpected) in 
the data more quickly and sometimes "better" than any other data analysis method. Categorized 
graphs allow you to plot the means, distributions, correlations, etc. across the groups of a given 
table (e.g., categorized histograms, categorized probability plots, categorized box and whisker 
plots). The graph below shows a categorized histogram which enables you to quickly evaluate 
and visualize the shape of the data for each group (group1-female, group2-female, etc.).  

 

The categorized scatterplot (in the graph below) shows the differences between patterns of 
correlations between dependent variables across the groups.  
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Additionally, if the software has a brushing facility which supports animated brushing, you can 
select (i.e., highlight) in a matrix scatterplot all data points that belong to a certain category in 
order to examine how those specific observations contribute to relations between other variables 
in the same data set.  

 

 
 
 

To index

 
Frequency tables  
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Purpose. Frequency or one-way tables represent the simplest method for analyzing categorical 
(nominal) data (refer to Elementary Concepts). They are often used as one of the exploratory 
procedures to review how different categories of values are distributed in the sample. For 
example, in a survey of spectator interest in different sports, we could summarize the 
respondents' interest in watching football in a frequency table as follows:  

STATISTICA 
BASIC 
STATS 

FOOTBALL: "Watching football"

Category Count
Cumulatv

Count Percent
Cumulatv
Percent

ALWAYS : Always interested 
USUALLY : Usually interested 
SOMETIMS: Sometimes interested 
NEVER : Never interested 
Missing 

39
16
26
19

0

39
55
81

100
100

39.00000
16.00000
26.00000
19.00000
0.00000

39.0000
55.0000
81.0000

100.0000
100.0000

 
The table above shows the number, proportion, and cumulative proportion of respondents who 
characterized their interest in watching football as either (1) Always interested, (2) Usually 
interested, (3) Sometimes interested, or (4) Never interested.  

Applications. In practically every research project, a first "look" at the data usually includes 
frequency tables. For example, in survey research, frequency tables can show the number of 
males and females who participated in the survey, the number of respondents from particular 
ethnic and racial backgrounds, and so on. Responses on some labeled attitude measurement 
scales (e.g., interest in watching football) can also be nicely summarized via the frequency table. 
In medical research, one may tabulate the number of patients displaying specific symptoms; in 
industrial research one may tabulate the frequency of different causes leading to catastrophic 
failure of products during stress tests (e.g., which parts are actually responsible for the complete 
malfunction of television sets under extreme temperatures?). Customarily, if a data set includes 
any categorical data, then one of the first steps in the data analysis is to compute a frequency 
table for those categorical variables. 

 
 
 

To index

 
Crosstabulation and stub-and-banner tables  

Purpose and Arrangement of Table. Crosstabulation is a combination of two (or more) 
frequency tables arranged such that each cell in the resulting table represents a unique 
combination of specific values of crosstabulated variables. Thus, crosstabulation allows us to 
examine frequencies of observations that belong to specific categories on more than one variable. 
By examining these frequencies, we can identify relations between crosstabulated variables. 
Only categorical (nominal) variables or variables with a relatively small number of different 
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meaningful values should be crosstabulated. Note that in the cases where we do want to include a 
continuous variable in a crosstabulation (e.g., income), we can first recode it into a particular 
number of distinct ranges (e.g., low, medium, high).  

2x2 Table. The simplest form of crosstabulation is the 2 by 2 table where two variables are 
"crossed," and each variable has only two distinct values. For example, suppose we conduct a 
simple study in which males and females are asked to choose one of two different brands of soda 
pop (brand A and brand B); the data file can be arranged like this:  

  GENDER SODA 
case 1 
case 2 
case 3 
case 4 
case 5 

... 

MALE 
FEMALE 
FEMALE 
FEMALE 

MALE 
... 

A 
B 
B 
A 
B 
... 

 
The resulting crosstabulation could look as follows.  

  SODA: A SODA: B   
GENDER: MALE 20 (40%) 30 (60%) 50 (50%)
GENDER: FEMALE 30 (60%) 20 (40%) 50 (50%)

  50 (50%) 50 (50%) 100 (100%)

 
Each cell represents a unique combination of values of the two crosstabulated variables (row 
variable Gender and column variable Soda), and the numbers in each cell tell us how many 
observations fall into each combination of values. In general, this table shows us that more 
females than males chose the soda pop brand A, and that more males than females chose soda B. 
Thus, gender and preference for a particular brand of soda may be related (later we will see how 
this relationship can be measured).  

Marginal Frequencies. The values in the margins of the table are simply one-way (frequency) 
tables for all values in the table. They are important in that they help us to evaluate the 
arrangement of frequencies in individual columns or rows. For example, the frequencies of 40% 
and 60% of males and females (respectively) who chose soda A (see the first column of the 
above table), would not indicate any relationship between Gender and Soda if the marginal 
frequencies for Gender were also 40% and 60%; in that case they would simply reflect the 
different proportions of males and females in the study. Thus, the differences between the 
distributions of frequencies in individual rows (or columns) and in the respective margins 
informs us about the relationship between the crosstabulated variables.  

Column, Row, and Total Percentages. The example in the previous paragraph demonstrates 
that in order to evaluate relationships between crosstabulated variables, we need to compare the 
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proportions of marginal and individual column or row frequencies. Such comparisons are easiest 
to perform when the frequencies are presented as percentages.  

Graphical Representations of Crosstabulations. For analytic purposes, the individual rows 
or columns of a table can be represented as column graphs. However, often it is useful to 
visualize the entire table in a single graph. A two-way table can be visualized in a 3-dimensional 
histogram; alternatively, a categorized histogram can be produced, where one variable is 
represented by individual histograms which are drawn at each level (category) of the other 
variable in the crosstabulation. The advantage of the 3D histogram is that it produces an 
integrated picture of the entire table; the advantage of the categorized graph is that it allows us to 
precisely evaluate specific frequencies in each cell of the table.  

Stub-and-Banner Tables. Stub-and-Banner tables, or Banners for short, are a way to display 
several two-way tables in a compressed form. This type of table is most easily explained with an 
example. Let us return to the survey of sports spectators example. (Note that, in order simplify 
matters, only the response categories Always and Usually were tabulated in the table below.)  

STATISTICA 
BASIC 
STATS 

Stub-and-Banner Table: 
Row Percent 

Factor FOOTBALL 
ALWAYS 

FOOTBALL
USUALLY

Row
Total

BASEBALL: ALWAYS 
BASEBALL: USUALLY 

92.31 
61.54 

7.69
38.46

66.67
33.33

BASEBALL: Total  82.05 17.95 100.00
TENNIS: ALWAYS 
TENNIS: USUALLY 

87.50 
87.50 

12.50
12.50

66.67
33.33

TENNIS: Total 87.50 12.50 100.00
BOXING: ALWAYS 
BOXING: USUALLY 

77.78 
100.00 

22.22
0.00

52.94
47.06

BOXING : Total 88.24 11.76 100.00

 
 

Interpreting the Banner Table. In the table above, we see the two-way tables of expressed 
interest in Football by expressed interest in Baseball, Tennis, and Boxing. The table entries 
represent percentages of rows, so that the percentages across columns will add up to 100 percent. 
For example, the number in the upper left hand corner of the Scrollsheet (92.31) shows that 
92.31 percent of all respondents who said they are always interested in watching football also 
said that they were always interested in watching baseball. Further down we can see that the 
percent of those always interested in watching football who were also always interested in 
watching tennis was 87.50 percent; for boxing this number is 77.78 percent. The percentages in 
the last column (Row Total) are always relative to the total number of cases.  
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Multi-way Tables with Control Variables. When only two variables are crosstabulated, we 
call the resulting table a two-way table. However, the general idea of crosstabulating values of 
variables can be generalized to more than just two variables. For example, to return to the "soda" 
example presented earlier (see above), a third variable could be added to the data set. This 
variable might contain information about the state in which the study was conducted (either 
Nebraska or New York).  

  GENDER SODA STATE 
case 1 
case 2 
case 3 
case 4 
case 5 

... 

MALE 
FEMALE 
FEMALE 
FEMALE 

MALE 
... 

A 
B 
B 
A 
B 
... 

NEBRASKA 
NEW YORK 
NEBRASKA 
NEBRASKA 
NEW YORK 

... 

 
The crosstabulation of these variables would result in a 3-way table:  

  STATE: NEW YORK STATE: NEBRASKA

  SODA: A SODA: B   SODA: A SODA: B   
G:MALE 20 30 50  5 45 50
G:FEMALE 30 20 50 45  5 50

  50 50 100 50 50 100

 
Theoretically, an unlimited number of variables can be crosstabulated in a single multi-way 
table. However, research practice shows that it is usually difficult to examine and "understand" 
tables that involve more than 4 variables. It is recommended to analyze relationships between the 
factors in such tables using modeling techniques such as Log-Linear Analysis or Correspondence 
Analysis.  

Graphical Representations of Multi-way Tables. You can produce "double categorized" 
histograms, 3D histograms,  
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or line-plots that will summarize the frequencies for up to 3 factors in a single graph. 

 

Batches (cascades) of graphs can be used to summarize higher-way tables (as shown in the graph 
below).  

 

Statistics in Crosstabulation Tables  

• General Introduction  
• Pearson Chi-square  
• Maximum-Likelihood (M-L) Chi-square  
• Yates' correction  
• Fisher exact test  
• McNemar Chi-square  
• Coefficient Phi  
• Tetrachoric correlation  
• Coefficient of contingency (C)  
• Interpretation of contingency measures  
• Statistics Based on Ranks  
• Spearman R  
• Kendall tau  
• Sommer's d: d(X|Y), d(Y|X)  
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• Gamma  
• Uncertainty Coefficients: S(X,Y), S(X|Y), S(Y|X)  

General Introduction. Crosstabulations generally allow us to identify relationships between the 
crosstabulated variables. The following table illustrates an example of a very strong relationship 
between two variables: variable Age (Adult vs. Child) and variable Cookie preference (A vs. B).  

  COOKIE: A COOKIE: B   
AGE: ADULT 50  0 50
AGE: CHILD  0 50 50

  50 50 100

 
All adults chose cookie A, while all children chose cookie B. In this case there is little doubt 
about the reliability of the finding, because it is hardly conceivable that one would obtain such a 
pattern of frequencies by chance alone; that is, without the existence of a "true" difference 
between the cookie preferences of adults and children. However, in real-life, relations between 
variables are typically much weaker, and thus the question arises as to how to measure those 
relationships, and how to evaluate their reliability (statistical significance). The following review 
includes the most common measures of relationships between two categorical variables; that is, 
measures for two-way tables. The techniques used to analyze simultaneous relations between 
more than two variables in higher order crosstabulations are discussed in the context of the Log-
Linear Analysis module and the Correspondence Analysis.  

Pearson Chi-square. The Pearson Chi-square is the most common test for significance of the 
relationship between categorical variables. This measure is based on the fact that we can 
compute the expected frequencies in a two-way table (i.e., frequencies that we would expect if 
there was no relationship between the variables). For example, suppose we ask 20 males and 20 
females to choose between two brands of soda pop (brands A and B). If there is no relationship 
between preference and gender, then we would expect about an equal number of choices of brand 
A and brand B for each sex. The Chi-square test becomes increasingly significant as the numbers 
deviate further from this expected pattern; that is, the more this pattern of choices for males and 
females differs.  

The value of the Chi-square and its significance level depends on the overall number of 
observations and the number of cells in the table. Consistent with the principles discussed in 
Elementary Concepts, relatively small deviations of the relative frequencies across cells from the 
expected pattern will prove significant if the number of observations is large.  

The only assumption underlying the use of the Chi-square (other than random selection of the 
sample) is that the expected frequencies are not very small. The reason for this is that, actually, 
the Chi-square inherently tests the underlying probabilities in each cell; and when the expected 
cell frequencies fall, for example, below 5, those probabilities cannot be estimated with sufficient 
precision. For further discussion of this issue refer to Everitt (1977), Hays (1988), or Kendall and 
Stuart (1979).  
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Maximum-Likelihood Chi-square. The Maximum-Likelihood Chi-square tests the same 
hypothesis as the Pearson Chi- square statistic; however, its computation is based on Maximum-
Likelihood theory. In practice, the M-L Chi-square is usually very close in magnitude to the 
Pearson Chi- square statistic. For more details about this statistic refer to Bishop, Fienberg, and 
Holland (1975), or Fienberg, S. E. (1977); the Log-Linear Analysis chapter of the manual also 
discusses this statistic in greater detail.  

Yates Correction. The approximation of the Chi-square statistic in small 2 x 2 tables can be 
improved by reducing the absolute value of differences between expected and observed 
frequencies by 0.5 before squaring (Yates' correction). This correction, which makes the 
estimation more conservative, is usually applied when the table contains only small observed 
frequencies, so that some expected frequencies become less than 10 (for further discussion of 
this correction, see Conover, 1974; Everitt, 1977; Hays, 1988; Kendall & Stuart, 1979; and 
Mantel, 1974).  

Fisher Exact Test. This test is only available for 2x2 tables; it is based on the following 
rationale: Given the marginal frequencies in the table, and assuming that in the population the 
two factors in the table are not related, how likely is it to obtain cell frequencies as uneven or 
worse than the ones that were observed? For small n, this probability can be computed exactly by 
counting all possible tables that can be constructed based on the marginal frequencies. Thus, the 
Fisher exact test computes the exact probability under the null hypothesis of obtaining the 
current distribution of frequencies across cells, or one that is more uneven.  

McNemar Chi-square. This test is applicable in situations where the frequencies in the 2 x 2 
table represent dependent samples. For example, in a before-after design study, we may count 
the number of students who fail a test of minimal math skills at the beginning of the semester and 
at the end of the semester. Two Chi-square values are reported: A/D and B/C. The Chi-square 
A/D tests the hypothesis that the frequencies in cells A and D (upper left, lower right) are 
identical. The Chi-square B/C tests the hypothesis that the frequencies in cells B and C (upper 
right, lower left) are identical.  

Coefficient Phi. The Phi-square is a measure of correlation between two categorical variables in 
a 2 x 2 table. Its value can range from 0 (no relation between factors; Chi-square=0.0) to 1 
(perfect relation between the two factors in the table). For more details concerning this statistic 
see Castellan and Siegel (1988, p. 232).  

Tetrachoric Correlation. This statistic is also only computed for (applicable to) 2 x 2 tables. If 
the 2 x 2 table can be thought of as the result of two continuous variables that were (artificially) 
forced into two categories each, then the tetrachoric correlation coefficient will estimate the 
correlation between the two.  

Coefficient of Contingency. The coefficient of contingency is a Chi-square based measure of 
the relation between two categorical variables (proposed by Pearson, the originator of the Chi-
square test). Its advantage over the ordinary Chi-square is that it is more easily interpreted, since 
its range is always limited to 0 through 1 (where 0 means complete independence). The 
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disadvantage of this statistic is that its specific upper limit is "limited" by the size of the table; C 
can reach the limit of 1 only if the number of categories is unlimited (see Siegel, 1956, p. 201).  

Interpretation of Contingency Measures. An important disadvantage of measures of 
contingency (reviewed above) is that they do not lend themselves to clear interpretations in terms 
of probability or "proportion of variance," as is the case, for example, of the Pearson r (see 
Correlations). There is no commonly accepted measure of relation between categories that has 
such a clear interpretation.  

Statistics Based on Ranks. In many cases the categories used in the crosstabulation contain 
meaningful rank-ordering information; that is, they measure some characteristic on an ordinal 
scale (see Elementary Concepts). Suppose we asked a sample of respondents to indicate their 
interest in watching different sports on a 4-point scale with the explicit labels (1) always, (2) 
usually, (3) sometimes, and (4) never interested. Obviously, we can assume that the response 
sometimes interested is indicative of less interest than always interested, and so on. Thus, we 
could rank the respondents with regard to their expressed interest in, for example, watching 
football. When categorical variables can be interpreted in this manner, there are several 
additional indices that can be computed to express the relationship between variables.  

Spearman R. Spearman R can be thought of as the regular Pearson product-moment correlation 
coefficient (Pearson r); that is, in terms of the proportion of variability accounted for, except that 
Spearman R is computed from ranks. As mentioned above, Spearman R assumes that the 
variables under consideration were measured on at least an ordinal (rank order) scale; that is, the 
individual observations (cases) can be ranked into two ordered series. Detailed discussions of the 
Spearman R statistic, its power and efficiency can be found in Gibbons (1985), Hays (1981), 
McNemar (1969), Siegel (1956), Siegel and Castellan (1988), Kendall (1948), Olds (1949), or 
Hotelling and Pabst (1936).  

Kendall tau. Kendall tau is equivalent to the Spearman R statistic with regard to the underlying 
assumptions. It is also comparable in terms of its statistical power. However, Spearman R and 
Kendall tau are usually not identical in magnitude because their underlying logic, as well as their 
computational formulas are very different. Siegel and Castellan (1988) express the relationship 
of the two measures in terms of the inequality:  

-1 < = 3 * Kendall tau - 2 * Spearman R < = 1  

More importantly, Kendall tau and Spearman R imply different interpretations: While Spearman 
R can be thought of as the regular Pearson product-moment correlation coefficient as computed 
from ranks, Kendall tau rather represents a probability. Specifically, it is the difference between 
the probability that the observed data are in the same order for the two variables versus the 
probability that the observed data are in different orders for the two variables. Kendall (1948, 
1975), Everitt (1977), and Siegel and Castellan (1988) discuss Kendall tau in greater detail. Two 
different variants of tau are computed, usually called taub and tauc. These measures differ only 
with regard as to how tied ranks are handled. In most cases these values will be fairly similar, 
and when discrepancies occur, it is probably always safest to interpret the lowest value.  
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Sommer's d: d(X|Y), d(Y|X). Sommer's d is an asymmetric measure of association related to tb 
(see Siegel & Castellan, 1988, p. 303-310).  

Gamma. The Gamma statistic is preferable to Spearman R or Kendall tau when the data contain 
many tied observations. In terms of the underlying assumptions, Gamma is equivalent to 
Spearman R or Kendall tau; in terms of its interpretation and computation, it is more similar to 
Kendall tau than Spearman R. In short, Gamma is also a probability; specifically, it is computed 
as the difference between the probability that the rank ordering of the two variables agree minus 
the probability that they disagree, divided by 1 minus the probability of ties. Thus, Gamma is 
basically equivalent to Kendall tau, except that ties are explicitly taken into account. Detailed 
discussions of the Gamma statistic can be found in Goodman and Kruskal (1954, 1959, 1963, 
1972), Siegel (1956), and Siegel and Castellan (1988).  

Uncertainty Coefficients. These are indices of stochastic dependence; the concept of stochastic 
dependence is derived from the information theory approach to the analysis of frequency tables 
and the user should refer to the appropriate references (see Kullback, 1959; Ku & Kullback, 
1968; Ku, Varner, & Kullback, 1971; see also Bishop, Fienberg, & Holland, 1975, p. 344-348). 
S(Y,X) refers to symmetrical dependence, S(X|Y) and S(Y|X) refer to asymmetrical dependence.  

Multiple Responses/Dichotomies. Multiple response variables or multiple dichotomies often 
arise when summarizing survey data. The nature of such variables or factors in a table is best 
illustrated with examples.  

• Multiple Response Variables  
• Multiple Dichotomies  
• Crosstabulation of Multiple Responses/Dichotomies  
• Paired Crosstabulation of Multiple Response Variables  
• A Final Comment  

Multiple Response Variables. As part of a larger market survey, suppose you asked a sample of 
consumers to name their three favorite soft drinks. The specific item on the questionnaire may 
look like this:  

Write down your three favorite soft drinks: 
1:__________    2:__________    3:__________ 

Thus, the questionnaires returned to you will contain somewhere between 0 and 3 answers to this 
item. Also, a wide variety of soft drinks will most likely be named. Your goal is to summarize 
the responses to this item; that is, to produce a table that summarizes the percent of respondents 
who mentioned a respective soft drink.  

The next question is how to enter the responses into a data file. Suppose 50 different soft drinks 
were mentioned among all of the questionnaires. You could of course set up 50 variables - one 
for each soft drink - and then enter a 1 for the respective respondent and variable (soft drink), if 
he or she mentioned the respective soft drink (and a 0 if not); for example:  
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  COKE PEPSI SPRITE . . . . 
case 1 
case 2 
case 3 

... 

0 
1 
0 
... 

1 
1 
0 
... 

0 
0 
1 
... 

  

 
This method of coding the responses would be very tedious and "wasteful." Note that each 
respondent can only give a maximum of three responses; yet we use 50 variables to code those 
responses. (However, if we are only interested in these three soft drinks, then this method of 
coding just those three variables would be satisfactory; to tabulate soft drink preferences, we 
could then treat the three variables as a multiple dichotomy; see below.)  

Coding multiple response variables. Alternatively, we could set up three variables, and a 
coding scheme for the 50 soft drinks. Then we could enter the respective codes (or alpha labels) 
into the three variables, in the same way that respondents wrote them down in the questionnaire.  

  Resp. 1 Resp. 2 Resp. 3 
case 1 
case 2 
case 3 
 . . . 

COKE 
SPRITE 
PERRIER 
 . . . 

PEPSI 
SNAPPLE 
GATORADE 
 . . . 

JOLT 
DR. PEPPER 
MOUNTAIN DEW
 . . . 

 
To produce a table of the number of respondents by soft drink we would now treat Resp.1 to 
Resp3 as a multiple response variable. That table could look like this:  

N=500 
Category Count Prcnt. of

Responses
Prcnt. of

Cases
COKE: Coca Cola 
PEPSI: Pepsi Cola 
MOUNTAIN: Mountain Dew 
PEPPER: Doctor Pepper 
 . . .  : . . . .  

44 
43 
81 
74 

.. 

5.23
5.11
9.62
8.79

...

8.80
8.60

16.20
14.80

...
  842 100.00 168.40

 
 

Interpreting the multiple response frequency table. The total number of respondents was 
n=500. Note that the counts in the first column of the table do not add up to 500, but rather to 
842. That is the total number of responses; since each respondent could make up to 3 responses 
(write down three names of soft drinks), the total number of responses is naturally greater than 
the number of respondents. For example, referring back to the sample listing of the data file 
shown above, the first case (Coke, Pepsi, Jolt) "contributes" three times to the frequency table, 
once to the category Coke, once to the category Pepsi, and once to the category Jolt. The second 
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and third columns in the table above report the percentages relative to the number of responses 
(second column) as well as respondents (third column). Thus, the entry 8.80 in the first row and 
last column in the table above means that 8.8% of all respondents mentioned Coke either as their 
first, second, or third soft drink preference.  

Multiple Dichotomies. Suppose in the above example we were only interested in Coke, Pepsi, 
and Sprite. As pointed out earlier, one way to code the data in that case would be as follows:  

  COKE PEPSI SPRITE . . . . 
case 1 
case 2 
case 3 

. . . 

  
1 
  

. . . 

1 
1 
  

. . . 

  
  
1 

. . . 
  

 
In other words, one variable was created for each soft drink, then a value of 1 was entered into 
the respective variable whenever the respective drink was mentioned by the respective 
respondent. Note that each variable represents a dichotomy; that is, only "1"s and "not 1"s are 
allowed (we could have entered 1's and 0's, but to save typing we can also simply leave the 0's 
blank or missing). When tabulating these variables, we would like to obtain a summary table 
very similar to the one shown earlier for multiple response variables; that is, we would like to 
compute the number and percent of respondents (and responses) for each soft drink. In a sense, 
we "compact" the three variables Coke, Pepsi, and Sprite into a single variable (Soft Drink) 
consisting of multiple dichotomies.  

Crosstabulation of Multiple Responses/Dichotomies. All of these types of variables can then 
be used in crosstabulation tables. For example, we could crosstabulate a multiple dichotomy for 
Soft Drink (coded as described in the previous paragraph) with a multiple response variable 
Favorite Fast Foods (with many categories such as Hamburgers, Pizza, etc.), by the simple 
categorical variable Gender. As in the frequency table, the percentages and marginal totals in 
that table can be computed from the total number of respondents as well as the total number of 
responses. For example, consider the following hypothetical respondent:  

Gender Coke Pepsi Sprite Food1 Food2
FEMALE 1 1   FISH PIZZA

 
This female respondent mentioned Coke and Pepsi as her favorite drinks, and Fish and Pizza as 
her favorite fast foods. In the complete crosstabulation table she will be counted in the following 
cells of the table:  

  Food . . .   
TOTAL No. 

of  RESP. Gender Drink HAMBURG. FISH PIZZA . . . 

29 
 



FEMALE 
  
  
MALE 
  
  

COKE 
PEPSI 
SPRITE 
COKE 
PEPSI 
SPRITE 

  
  
  
  
  
 

X 
X 
  
  
  
 

X 
X 
  
  
  
 

 
 
 
 
 
 

2 
2 
  
  
  
 

 
This female respondent will "contribute" to (i.e., be counted in) the crosstabulation table a total 
of 4 times. In addition, she will be counted twice in the Female--Coke marginal frequency 
column if that column is requested to represent the total number of responses; if the marginal 
totals are computed as the total number of respondents, then this respondent will only be counted 
once.  

Paired Crosstabulation of Multiple Response Variables. A unique option for tabulating 
multiple response variables is to treat the variables in two or more multiple response variables as 
matched pairs. Again, this method is best illustrated with a simple example. Suppose we 
conducted a survey of past and present home ownership. We asked the respondents to describe 
their last three (including the present) homes that they purchased. Naturally, for some 
respondents the present home is the first and only home; others have owned more than one home 
in the past. For each home we asked our respondents to write down the number of rooms in the 
respective house, and the number of occupants. Here is how the data for one respondent (say 
case number 112) may be entered into a data file:  

Case no. Rooms  1   2   3  No. Occ.  1   2  3 
 112    3   3   4     2   3  5 

 
This respondent owned three homes; the first had 3 rooms, the second also had 3 rooms, and the 
third had 4 rooms. The family apparently also grew; there were 2 occupants in the first home, 3 
in the second, and 5 in the third.  

Now suppose we wanted to crosstabulate the number of rooms by the number of occupants for 
all respondents. One way to do so is to prepare three different two-way tables; one for each 
home. We can also treat the two factors in this study (Number of Rooms, Number of Occupants) 
as multiple response variables. However, it would obviously not make any sense to count the 
example respondent 112 shown above in cell 3 Rooms - 5 Occupants of the crosstabulation table 
(which we would, if we simply treated the two factors as ordinary multiple response variables). 
In other words, we want to ignore the combination of occupants in the third home with the 
number of rooms in the first home. Rather, we would like to count these variables in pairs; we 
would like to consider the number of rooms in the first home together with the number of 
occupants in the first home, the number of rooms in the second home with the number of 
occupants in the second home, and so on. This is exactly what will be accomplished if we asked 
for a paired crosstabulation of these multiple response variables.  
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A Final Comment. When preparing complex crosstabulation tables with multiple 
responses/dichotomies, it is sometimes difficult (in our experience) to "keep track" of exactly 
how the cases in the file are counted. The best way to verify that one understands the way in 
which the respective tables are constructed is to crosstabulate some simple example data, and 
then to trace how each case is counted. The example section of the Crosstabulation chapter in 
the manual employs this method to illustrate how data are counted for tables involving multiple 
response variables and multiple dichotomies. 

 


